Search the web

Senin, 15 November 2010

Nokia N8

GLOBAL – The Nokia N8 today officially emerges into the daylight, stepping out of the shadows equipped with a host of smartphone talents. The first device to be powered by the brand new Symbian^3 platform, the Nokia N8 will launch with a new breed of camera that promises to capture photos and video to rival dedicated point and shoot cameras. Read on to explore Nokia N8′s full list of talents.

The biggest feature on the Nokia N8 is its 12-megapixel camera with Carl Zeiss optics and Xenon flash. It features a substantially larger sensor than any ever used in any other Nokia device – even bigger than many found in dedicated cameras. Recently, we caught up with Nokia’s resident camera guru, Damian Dinning, to get the full lowdown on what went into fine-tuning the N8′s camera and video capture skills – you’ll be able to read the full fact-packed story right here on Conversations this week, so stay tuned. Check out the first sample images from the Nokia N8
The Nokia N8 also introduces the ability to record high definition videos and edit them with a smart built-in editing suite on the device. Playback quality is just as important, and the 3.5-inch HD capacitive touchscreen is the ideal window for assessing your flicks and footage. There’s also a HDMI connector allowing you to hook the smartphone to your HD TV and share your media with friends and family in superb quality. We wanted to find out more about the benefits of HDMI in the Nokia N8 so we spoke to Paul Wheeler, a software program manager at Nokia, to get the full story – again, be sure to keep an eye out for our full story this later this week.
Check out the first HD video sample from the Nokia N8
The Nokia N8 also doubles as a portable entertainment centre. Watch HD quality video with Dolby Digital Plus surround sound and hook into a dedicated Web TV application for access to news and entertainment on the move.
It’s not just its 12-megapixel camera and HD video skills with HDMI support that set the Nokia N8 apart from the crowd. Packing more memory than most, the Nokia N8 has 16GB of built-in storage and is expandable up to 48GB with a micro SD card.
Joining the social messaging fold with the likes of the latest Eseries and Cseries devices, the N8 enters the fray with live Twitter and Facebook updates direct to your homescreen. Comment, read and send messages, update your status and share your location and photos with one touch.
Embracing location based services, the N8 is location-savvy and comes with free global Ovi Maps walk and drive navigation with support in more than 70 countries worldwide.
Powering the Nokia N8 is the all-new Symbian^3 platform. This latest incarnation introduces major new advances including multi-touch and support for gestures such as pinch-to-zoom. Onboard there’s also three customisable homescreens that can be loaded with applications and widgets and flicked through by a swish of the finger. There’s also improved 2D and 3D graphics for a faster and more responsive UI, greater memory management and a visual task manager.
Of course, the Nokia N8 comes with access to the full range of Ovi services and it’s Nokia’s first smartphone to be integrated with Qt. Got and idea for an app? Qt is a software development environment that makes it a cinch to build apps and deploy across the Symbian and other software platforms.
Not to be outdone by its innards the Nokia N8 is carved from a single piece of anodised aluminium and looks glorious decked in one of five eye-catching colours (we’ll shortly be bringing you an entire article dedicated to the colours). It will cost €370 (before the usual local taxes and subsidies) when it starts shipping in the third quarter of 2010.
Over the coming week we’ll bring you heaps more insight and info surrounding the new Nokia N8, including designer interviews, exclusive videos, and much more. Stay tuned for all our unmissable coverage throughout the week. In the meantime, share your instant reactions and let us know what you want to know about the Nokia N8 by joining the conversation below.

Check out more at Nokia.com

Senin, 08 November 2010

Hukum Boyle

Hukum Boyle (kadang kala dirujuk sebagai Hukum Boyle-Mariotte) adalah satu daripada beberapa hukum gas dan kes khusus bagi hukum gas ideal ("ideal gas law). Hukum Boyle menggambarkan hubungkait kadar songsang antara tekanan dan isipadu mutlak gas, jika suhu dikekalkan sekata dalam sistem tertutup.[1][2] Hukum ini dinamakan sempena ahli kimia dan fizik Robert Boyle, yang menerbitkan hukum asal pada tahun 1662.[3] Hukum itu boleh dinyatakan seperti berikut:
Bagi jumlah tetap gas ideal dikekalkan pada suhu tetap, P [tekanan - "pressure"] dan V [Isipadu - volume] adalah berkadar songsang (ketika satu meningkat, yang lain menurun).[2]

Isi kandungan

[sorok]

[sunting] Sejarah

Hukum Boyle merupakan salah satu dari hukum gas. Hukum ini pertama kali disarankan dalam tahun 1662 oleh Robert Boyle yang bertindak balas terhadap cadangan oleh penolongnya John Townley, menjelaskan bahawa pada suhu malar, isipadu gas tetap adalah berkadar songsang dengan tekanan. Menurut Hukum Boyle, isoterma untuk gas adalah hiperbola, tetapi gas sahih mempunyai isoterma hiperbola hanya dalam had p menghampiri 0.
Hukum Boyle digunakan untuk meramalkan tekanan gas apabila isipadu berubah (atau sebaliknya).
Pernyataan Hukum Boyle:
pV = malar (n, T malar)
iaitu p ialah tekanan gas dan V ialah isipadu gas.
Rencana utama: Sejarah termodinamik
Graf data asal Boyle
Hubungkait antara tekanan dan isipadu pertama kali disedari oleh dua ahli sains amateur, Richard Towneley dan Henry Power. Boyle mengesahkan jumpaan mereka melalui ujikaji dan menerbitkan keputusannya. Menurut Robert Gunther dan pihak berkuasa lain, pembantu Boyle, Robert Hooke, yang membina perkakasan ujikaji. Hukum Boyle berasaskan ujikaji dengan udara, yang dia anggap sebagai cecair zarah ketika rehat, berada antara spring halimunan kecil. Pada ketika itu udara masih dianggap satu daripada empat unzur, tetapi Boyle tidak menolaknya. Kemungkinan minat Boyle adalah untuk memahami udara sebagai unsur penting kehidupan [4]; dia menerbitkan contoh. pertumbuhan tumbuhan tanpa udara [5]. Ahli fizik Perancis Edme Mariotte (1620-1684) menjumpai hukum yang sama bebas dari Boyle pada tahun 1676, tetapi Boyle telahpun menerbitkan mengenainya pada 1662, dengan itu hukum ini boleh, tidak sepatutnya, dirujuk sebagai Mariotte atau hukum Boyle-Mariotte. Kemudian (1687) dalam PhilosophiƦ Naturalis Principia Mathematica Newton menunjukkan secara mathematik bahawa sekiranya cecair elestik terdiri daripada jirim pada rehat, antaramana kuasa menolak menyongsang berkadar dengan jaraknya, isipadu akan menurut kadar dengan tekanan [6], tetapi treatise mathematik ini bukanlah penjelasan fizikal bagi hubungkait yang diperhatikan. Tetapi menggantikan teori statik, teori kinetik yang diperlukan, yang diberikan dua abad kemudian oleh Maxwell dan Boltzmann.

[sunting] Tafsiran

[sunting] Kaitan teori kinetik dan gas ideal

Hukum Boyle menyatakan bahawa pada suhu kekal bagi jisim tetap, tekanan mutlak dan isipadu gas berkadar secara menyongsang. Hukum ini juga boleh dinyatakan dalam bentuk berlainan sedikit, bahawa hasil tekanan dan isipadu mutlak kekal malar.
Kebanyakan gas bertindak seperti gas ideal pada tekanan dan suhu serdahana. Had teknologi pada abad ke 1600-an tidak mampu menghasilkan tekanan tinggi atau suhu rendah. Dengan itu, hukum ini tidak mungkin memiliki herotan pada masa diterbitkan. Ketika peningkatan dalam teknologi membenarkan tekanan lebih tinggi dan suhu lebih rendah, perbezaan natara kelakuan ideal gas mula menjadi jelas, dan kaitan antara suhu dan isipadu hanya boleh digambarkan dengan tepat menggunakan teori gas sebenar.[7] Perbezaan digambarkan sebagao faktor boleh dimampat ("compressibility factor").
Robert Boyle (dan Edme Maria) menghasilkan hukum ini semata-mata berasaskan ujikaji. Hukum ini juga boleh dihasilkan secara teori berasaskan anggapan kewujudan atom dan molekul dan andaian mengenai pergerakan dan perlanggaran elestik sempurna (lihat teori kinetik gas). Rumusan ini mendapat tentangan hebat dikalangan masyarakat sains pada masa itu, kerana ia dilihat semata-mata teori ciptaan bagi mana tidak terdapat bukti yang boleh dilihat langsung.
Daniel Bernoulli pada tahun 1738 telah menghasilkan hukum Boyle dengan menggunakan hukum pergerakan Newton dengan penggunaan pada tahap molekul. Ia kekal terbiar sehingga sekitar 1845, apabila John Waterston menerbitkan kertas kerja membina pada aturan utama teori kinetik; ini ditolak oleh Royal Society of England. Kerja berikutnya oleh James Prescott Joule, Rudolf Clausius dan terutamanya oleh Ludwig Boltzmann mengukuhkan kedudukan teori kinetik gas dan membawa perhatian kepada kedua-dua teori Bernoulli dan Waterston.[8]
Perdebatan antara penyokong Bertenaga ("Energetics") dan Atomik ("Atomism") mendorong kepada Boltzmann untuk menulis buku pada 1898, yang mendapat kritikan sehingga mendorongnya membunuh diri pada 1906.[8] Albert Einstein pada 1905 menunjukkan bagaimana teori kinetik diguna pakai bagi pergerakan Brownian bagi zarah tergantung-cecair, yang disahkan pada tahun 1908 oleh Jean Perrin.[8]

[sunting] Persamaan

Persamaan mathematik bagi hukum Boyle adalah:
\qquad\qquad pV = k
di mana:
p mewakili tekanan pada sistem.
V mewakili isipadu gas.
k mewakili nilai malar mewakili tekanan dan isipadu sistem.
Selagi suhu kekal malar jumlah tenaga diberikan kepada sistem tekal sepanjang operasinya dan dengan itu, secara teori, nilai k akan kekal sekata. Bagaimanapun, disebabkan hasilan tekanan ketika kuasa dikenakan secara sudut tepat ("perpendicular") dan kemungkinannya perlanggaran dengan jirim lain melalui teori perlanggaran ("collision theory"), pemberian tenaga pada permukaan mungkin tidak selamanya malar bagi nilai k seperti itu, tetapi akan memiliki had apabila pembezaan ("[[differential calculus") nilai tersebut melalui masa.
Memaksa peningkatan isipadu V pada jumlah tetap gas, mengekalkan gas pada suhu diukur pada awalnya, tekanan p mesti menurun menyongsang. Sama juga, mengurangkan isipadu gas meningkatkan tekanan.
Hukum Boyle digunakan bagi menjangka hasil memperkenalkan perubahan, pada isipadu dan tekanan sahaja, kepada jumlah tetap gas. Isipadu sebelum dan selepas dan tekanan pada jumlah tetap gas, di mana suhu sebelum dan selepas kekal sama (penyejukan dan pemanasan akan diperlukan bagi memenuhi syarat ini), dikaitkan dengan persamaan:
p_1 V_1 = p_2 V_2. \,
Hukum Boyle, Hukum Charles, dan Hukum Gay-Lussac membentuk gabungan hukum gas. Ketiga-tiga hukum gas bersama gabungan dengan hukum Avogadro boleh secara umum dianggap hukum gas ideal.